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Introduction
Learner attainment in primary mathematics in South Africa continues to be low for the majority 
of children in the state education system, and is described by Fleisch (2013) as the ongoing 
‘quality challenge’ in the context of striking improvements in the extent of physical access to 
primary schooling. Within this broad challenge, a more specific problem relates to progression in 
the strategies that children use for arithmetic tasks, with evidence of learners persistently relying 
on concrete counting methods well into the upper primary grades (Schollar 2008). There is also 
evidence of a lack of sense-making when solving simple problems, with Hoadley’s (2007) research 
indicating that learners offered random answers set within what she describes as ‘guessing 
exchanges’ in which ‘the learners offered any number as a response until such time as the correct 
answer was offered and affirmed by the teacher’ (p. 701).

This context of poor performance leads to ongoing interest in interventions that seek to improve 
learners’ understandings of, and outcomes in, primary mathematics. The programme of research 
under the umbrella of the Wits Mathematics Connect – Primary (WMC-P) project has several 
research and development initiatives aimed at addressing raising attainment. Prior to the research 
reported on here, the focus in intervention initiatives within the broader project was primarily on 
additive reasoning (AR), with only one multiplicative reasoning (MR) intervention trialled in one 
Grade 6 class (Dlamini, Ventkat & Askew 2014). In this article, we report on a pilot study where 
the attention turned to teaching and learning MR, that is, to the kinds of reasoning required in 
situations underpinned by a multiplicative (i.e. a multiplication- or a division-based) structure. 
Later, in this article, before reporting the findings relating to learning gains seen in the pilot study, 

Background: Given the context of low attainment in primary mathematics in South Africa, 
improving learners’ understanding of multiplicative reasoning is important as it underpins 
much of later mathematics.

Aim: Within a broader research programme aiming to improve Foundation Phase (Grades 1–3, 
7–9-year-olds) learners’ mathematical performance, the aim of the particular research reported 
on here was to improve learners’ understanding of and attainment in multiplicative reasoning 
when solving context-based problems.
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disadvantaged learner population, and involved teachers and learners from three classes in 
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Methods: A 4-week intervention piloted the use of context-based problems and array images 
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the models produced used both to support problem solving and to support understanding of 
the multiplicative structures of the contexts.

Results: Cleaning the data to include those learners participating at all three data points – pre-, 
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show that, on average, Grade 1 learners had a mean score average increase of 22 percentage 
points between the pre-test and the delayed post-test, with Grades 2 and 3 having mean increases 
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Conclusion: The findings of this study demonstrate that young learners can be helped to 
better understand and improve their attainment in multiplicative reasoning, and suggest the 
usefulness of trialling the intervention model more broadly across schools.
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we describe the kinds of situations that have been described 
in the literature as constituting the ‘conceptual field’ of MR. 
In the literature on learner responses to MR tasks, of particular 
note and pertinence here is the widely reported issue of 
learners reverting to the incorrect use of addition or 
subtraction operations in situations that require a 
multiplicative scaling up or scaling down (Hart 1981).

This pilot project’s overall aim was to develop, adapt and 
trial teaching materials through a focused intervention to 
support a better-connected pedagogy for teaching MR. Thus, 
specific objectives of the study were to:

• examine the impact on learner performance of a small-
scale, pilot, school-based intervention

• further understand the teaching and learning of MR.

This article reports on the first of these objectives, focusing in 
particular on the evidence of learner gains based on results in 
pre-, post- and delayed post intervention tests.

Theoretical background
Rationale for the focus on multiplicative 
reasoning
Internationally, it is widely acknowledged that MR is a 
critical area within primary mathematics and that 
strengthening attainment in this aspect of mathematics 
would create a more secure foundation for secondary and 
tertiary mathematics. Multiplicative reasoning underpins 
several key aspects of work in number, including rational 
number, ratio and proportion, and percentages. These are 
topics that Lamon (2005) points out are not only important 
for later success, but also are difficult to teach, as they are 
mathematically challenging and require time for the 
development of learners’ understanding. Further to this, 
longitudinal research in the United Kingdom shows that 
raising levels of understanding of MR in secondary school 
appears to be an intractable problem (Brown, Kuchemann & 
Hodgen 2010), a result that the literature suggests is likely to 
hold elsewhere. Thus, a sound grounding in MR in the early 
years of primary schooling is essential, and research into how 
to achieve this has implications not only for South Africa but 
also more broadly.

Multiplicative reasoning situations: 
Overviewing the literature
Our analysis draws primarily on Vergnaud’s (1994) distinction 
between addition and multiplication as conceptual fields. In 
Vergnaud’s analysis, a key feature of AR is that it involves the 
transformation of only one variable that can happen in three 
ways: an initial quantity or variable is changed either through 
combining or separating off another, like quantity; part-part-
whole considerations can be made of a quantity; and two 
quantities of the same variable can be compared. Although 
couched in different terms, this analysis is similar to the 
distinctions set out in the cognitively guided instruction 
framework of ‘root’ problems of addition (Carpenter et al. 
1999). From this analysis, Vergnaud argues that AR problems 

are essentially ternary problems in that they involve three 
numbers, and, importantly, each number represents one 
variable (e.g. in the problem ‘Constance bought 3 apples and 
then 4 more. How many apples is that in total?’, the three 
numbers involved are three, four and the whole, seven, and 
each represents the single variable ‘number of apples’).

Vergnaud also classifies MR problems into three types: 
simple proportions, Cartesian product of two measures and 
multiple proportions. Simple proportion problems represent 
the first category of problems relating to multiplicative 
situations that are introduced in schools, and were thus 
suitable for an intervention focused on the Foundation Phase 
grades (Grades 1–3, 7–9-year-olds). Simple proportion 
problems involve two variables in a fixed ratio, a typical type 
of such problem being:

Nomonde bought 3 bags of apples. Each bag contains 4 apples. 
How many apples did Nomonde buy?

This problem represents a basic multiplicative situation, the 
variables being bags and apples, here in the fixed ratio of 1:4. 
Such a context can also be set in two other problem forms, 
resulting in:

Nomonde bought 12 apples in 3 equal sized bags. How many apples 
were in each bag?

Nomonde bought 12 apples in bags which contained 4 apples each. 
How many bags of apples did she buy?

These latter two problems can both be represented by 
division, with the former depicting a sharing (partitive) 
situation and solved initially by young children with concrete 
one-by-one distributing actions, which over time can be 
compressed through moves from unit counting out to 
composite sharing actions, and, eventually, to replications of 
the number of shares as a composite unit. The latter problem 
depicts a grouping (quotative) situation in which initial 
concrete actions involve the formation of a group and then 
replicating the group as a composite unit.

Although simple proportion problems can be solved by 
repeated addition or subtraction, Vergnaud points out 
that multiplicative structures ‘have their own intrinsic 
organization which is not reducible to additive aspects’ 
(Vergnaud 1983:128). Restricting understandings of 
multiplicative situations to repeated addition or subtraction 
masks the fact that even such seemingly simple problems 
actually involve four numbers with the ‘hidden’ number 
being 1, hidden through being implicit in phrases like ‘each 
bag’. The subtle rate invoked in such problems means that 
MR problems are primarily distinguished from AR problems 
in being quaternary – they involve four numbers, not three. 
The quaternary nature of multiplication becomes clear when 
setting out, for example, the first problem above in a simple 
T-table (see Figure 1) to make clear that, unlike additive 
situations, there are two variables – the number of bags and 
the number of apples – with a constant ratio between these.
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Shifting the position of the unknown in Figure 1 leads to 
models for the two related division problems above, thus not 
only linking multiplication and division but also providing 
the opportunity to make explicit the ratio nature of the 
problems (see Figure 2).

Kieren (1988) emphasises that the basic action in MR situations 
is one of replication of the ratio-based composite unit or its 
inverse. The correspondence relation in MR situations is based 
on this ratio or rate. For example, in the multiplicative 
relationship of one bag containing four apples, adding two 
more bags to the set of bags, results in needing to add eight more 
apples to the set of apples to keep constant the ratio relationship 
between the bags and apples. Learners retaining an additive 
view of correspondence frequently increase the number of 
apples by two in the latter situation, providing ‘six apples’ as the 
quantity matched with three bags. Park and Nunes (2001) report 
that a small-scale experimental study indicated greater progress 
for the groups that were explicitly taught about this functional 
correspondence relationship, in the context of multiplicative 
situations, than for the groups that were taught the more 
traditional procedural connection between repeated addition 
and multiplication (see also Askew 2018).

We posit that learners can be supported into an informal sense 
of functional correspondence by the incorporation into lessons 
of ‘realistic situations’ – with ‘realistic’ used here in the sense 
developed by the researchers in the tradition of ‘Realistic 
Mathematics Education’ (see, e.g., Beishuizen, Gravemeijer & 
Van Lieshout 1997) of ‘realisable’ situations that (1) learners 
make sense of and (2) having made sense of, can then use 
informal means to solve. Nunes and Bryant’s (2009) review of 
evidence further suggests the need to include a variety of 
situational contexts as a base from which to mathematise. The 
learners’ informal means of solution are used as the basis for 
developing diagrammatic ‘models of’ multiplicative situations 
that can then function as ‘models for’ new situations, as also 
noted within the MR literature (Streefland 1985).

Two models have been identified as particularly useful in 
work with young children on simple proportions. Several 
researchers have argued for the power of array images to help 
learners develop MR and to distinguish this from AR (Barmby 
et al. 2009). The two-dimensional nature of the array image 
reflects, spatially, the two-variable structure of multiplicative 
situations, in contrast to the one-dimensional number line that 

reflects the one-variable structure of additive situations. Arrays 
also embody the commutative nature of multiplication and 
encourage a view of multiplicative situations as involving 
composite groups – for example, describing an array as three 
groups of four or four groups of three encourages and 
reinforces treating a ‘group of three’ or a ‘group of four’ as 
units in their own right (Fosnot & Dolk 2001).

Symbolic representation of the array image leads to the second 
model, the ratio table (also known as the T-table), as shown in 
Figure 1, which both Streefland (1985) and Vergnaud (1994) 
have argued is particularly useful for emphasising multiplicative 
relationships. For simple proportions, the T-table’s spatial 
arrangement helps to make explicit the scalar relationship 
within quantities (reading down the columns of the table) and 
the functional relationship between quantities (reading across 
the rows) (Vergnaud 1994:6). The double number line acts as a 
precursor to the ratio table, with key differences being that the 
former is presented horizontally and the latter vertically, and 
with all possible ratio pairs being set out on the double number 
line (see Küchemann, Hodgen & Brown 2011), whereas the 
T-table encourages some compression of pairs (e.g. through 
doubling as you go down with the column). For instance, in the 
case of the apples problem above, jumps for bags would be 
shown above the line, jumps for groups of apples below the line, 
with the intermediate jumps also shown (see Figure 3).

Moving to the vertically presented T-table brings affordances 
that encourage the learners to look for relationships that 
circumvent filling in all the possible steps, for example, 
extending the problem to six bags of apples would involve, 
on the double number line, drawing the extra jumps for four, 
five and six bags or scaling up the jump size, whereas learners 
might note in the T-table that doubling the number of apples 
in three bags gives the solution to six bags. In each case, 
however, the key conceptual move in MR is realising the 
ratio, functional, relationship that exists when reading the 
figures above and below on the double number line or across 
the rows in the ratio table (as opposed to coordinating two 
scalar relationships by working separately along two number 
lines or down the two columns of the ratio table). See Askew 
(2018) for a fuller discussion of this move to the functional.

South Africa’s Foundation Phase 
Curriculum and multiplicative 
reasoning
The overview of literature provides a vantage point for 
considering the ways in which MR ideas are inscribed into 
the South African Foundation Phase Curriculum and 
Assessment Policy Standard (CAPS) document. All three 
categories of simple proportion problems as outlined 

Bags Apples

1

3

4

?

FIGURE 1: T-table for simple proportion problem. 

Bags
1
3

?
12

4
12

1
?

Apples Bags Apples

FIGURE 2: T-tables for related division problems. 

Bags 1 2 3

Apples 4 8 12

FIGURE 3: Double number line for 1:4 ratio. 
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above – multiplication, together with division as both 
sharing and grouping – are exemplified within the CAPS 
Foundation Phase document across all three grades 
(Department of Basic Education [DBE] 2011:G1 pp. 45–46, 
G2 pp. 61–62, G3 pp. 79–80). Furthermore, the curriculum 
includes examples of division situations involving a 
remainder that sometimes needs to be rounded up, or 
down, based on making sense of the context. For example, 
Grade 1 learners are expected to solve problems like 
(Department of Basic Education [DBE] 2011):

Stella sells apples in bags of three apples each. She has 14 apples. 
How many bags of three apples each can she make up? …

Ben wants to take 15 eggs to his grandmother. How many egg 
boxes that can take six eggs each does he need to pack all the 
eggs? …

Share 14 sweets among three friends so that they all get the same 
number of sweets. (p. 45)

Similar problems are suggested for Grades 2 and 3 with the 
basic problem structure preserved but the number range 
increased. However, the curricular advice in the ‘topics’ 
outline on how to work with such problems tends singularly 
to emphasise repeated addition as the route into 
multiplication, across both word problems and context-free 
calculations, with the recurring appearance of the phrase: 
‘Repeated addition leading to multiplication’. Details 
elsewhere in the document’s clarification guidelines do 
elaborate on a broader range of representations, including 
the array and ratio tables, but also emphasising the use of 
single number lines to represent repeated addition (e.g. 
DBE 2011:425) (a one-variable representation, as noted 
above) and with scant guidance on how to work with and 
across a range of representations. There are also statements 
such as learners should: ‘practise and understand that 
multiplication can be done in any order (the commutative 
law or property)’ (e.g. p. 394), but with little detail on how 
the commutative property could be introduced, such as 
using the array as a useful model for showing the 
commutativity property.

Division is largely dealt with as a separate strand to 
multiplication in the CAPS, and, in particular, strikingly 
absent is the notion that models such as double number lines, 
arrays or ratio tables might be used as inscriptions that 
connect both operations, in spite of the specification that 
learners should (DBE 2011):

… understand and appreciate the relationship between 
multiplication and division and that they are inverse operations. 
(p. 465)

Taken together, and considered in relation to the literature, 
the CAPS curriculum presents a disconnected list of problem 
situations, models and procedures, rather than the carefully 
connected and progressive sequence for building MR that 
Vergnaud (1994) suggests is possible. These disconnections 
are of concern, given that the Department of Basic Education 
diagnostic reports on South Africa’s Annual National 
Assessments (ANAs) (DBE 2012, 2013, 2014) all highlight 

word problems in general and MR situations in particular as 
systemic concerns in the light of low learner performance on 
such items.

The intervention
Design principles
Curricular confusion, coupled with the low learner 
performance on word problems and on MR tasks more 
widely that we noted early, added motivation to our decision 
to develop, in one primary school, an intervention focused on 
MR across Foundation Phase grades (Grades 1–3). Our 
conjecture in designing the research and intervention was 
that if more explicit attention were paid to the ratio aspect of 
the MR problems met in primary school, then learners would 
be better prepared for later understandings of proportional 
reasoning and linear functions (Kaput & West 1994). With 
this in mind, a pilot project was carried out comprising a 
4-week intervention of one lesson per week with a focus on 
making the simple ratio nature of MR explicit, both to 
teachers and to learners, through using problems set in 
contexts such as cooking pots and legs, people and feet, boxes 
and eggs, and working in the first instance with array models, 
coupled later with T-tables. The impact of the intervention 
was investigated through learners being assessed pre- and 
post-intervention, and then in a delayed post-assessment.

The ways in which the CAPS advice both overlapped and 
also departed from the literature on teaching MR informed 
our choice of theoretical framings. In particular, we drew on 
the focus on MR in terms of Vergnaud’s (2009) conceptual 
fields, which integrate findings from psychology about 
learning of MR together with disciplinary considerations of 
the structure and relationships among MR situations, rather 
than treating MR only as developing the knowledge of 
multiplication and division facts and procedures. Treating 
MR as a conceptual field was also useful to us not only 
because it provided a coherent model of situations that can 
form the basis of understanding MR but also because it 
explicitly contrasts MR with AR.

Study design
The broader WMC-P project had worked with classroom 
interventions in a sequential grade-based model in the 
Foundation Phase, which is tracking the learner cohort across 
the Foundation Phase years. One of the partner schools invited 
us to do some work with them at the phase level (not just 
year level) on topics that both teachers and learners were 
having difficulty working with. This quintile 5 school 
(the category of schools catering for the least poor 20% of 
pupils1) was a functional suburban Johannesburg school serving 
a predominantly historically disadvantaged learner population. 

1.South Africa adopts a pro-poor funding model for its schools where schools are 
classified by socio-economic status of the surrounding community. The schools in 
the most affluent areas are referred to as quintile 5, while schools in lower socio-
economic status communities are classified as lower quintiles. Quintiles 1–3 receive 
the greatest public funding per learner and are ‘no fee schools’, while quintiles 4 and 
5 schools may charge parents fees (provided that the learner’s family earns in excess 
of 10 times the annual school fees; and if this is not the case, the family is fee 
exempt).
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There were three classes in each of Grades 1–3 and our initial 
plan was to involve only two classes in each grade, with testing 
undertaken with all learners in all nine Foundation Phase 
classes: three classes would thus have provided control data. 
The school’s senior management was, however, keen to offer all 
the teachers the opportunity to participate – an offer that all nine 
accepted, so no control data would be collected. While limiting 
our research, we went with the schools’ wishes as this seemed 
most equitable.

Multiplication, division and word problems, mentioned as 
separate topics, featured prominently in these Foundation 
Phase teachers’ comments about areas of difficulty. This led us 
to think about an intervention lesson sequence model that we 
had developed at a smaller scale in an earlier project (Ekdahl, 
Venkat & Runesson 2016). The intervention was based on an 
adapted lesson-study model. A grade-specific pre-test, co-
developed by and agreed between researchers and teachers as 
suitable for the grade, was initially administered to all learners. 
The test included some AR items interspersed with MR items to 
prevent learners being ‘cued’ into the selection of multiplication 
or division operations. Items requiring the rounding up or 
rounding down of remainders were included, given that the 
curriculum included these in its specification. The learner pre-
testing was followed by an initial school-based workshop with 
the nine teachers. Part of this workshop involved the teachers in 
marking some of the pre-test papers. Discussion of the learners’ 
responses on these tests alerted the teachers to the predominance 
of errors, particularly learners treating the problems erroneously 
as simple additions, and thus set the scene for the introduction 
of the array image and the idea of using problems to elicit and 
work with models.

The intervention model
Over the 4 weeks following the pre-testing of learners, four 
lessons, co-operatively planned between the teachers and the 
research team, were taught, one a week. The intervention 
lessons were organised around three phases: rapid calculation 
of multiplication and division facts by working with images 
of arrays, learners solving context-based problems in pairs 
and solutions discussed as a whole class, individual practice 
and consolidation of context-based problems. The contexts 
chosen for the problems in the lessons differed from those in 
the test.

After each lesson, the research team and the teachers met in 
the afternoon to explore and reflect on the responses of the 
learners and plan the next lesson in light of these (part of 
these meetings was spent working in grade-level teams, and 
part spent looking at cross-grade issues). At these meetings, 
we explored whether or not any of the teachers were teaching 

additional lessons informed by the intervention: our sense 
was that they were only teaching the four lessons that we 
proposed. The post-test was administered the week after the 
fourth lesson. All intervention lessons were videotaped, as 
were the meetings with the teachers, and each teacher was 
interviewed pre- and post-intervention. The data were 
analysed to explore the impact of the intervention on 
pedagogy and teacher beliefs and understanding, and to put 
into context the assessment data reported on here.

The intervention took place towards the end of the school 
year and the delayed post-test was administered soon after 
the start of the next school year, before the teaching in the 
subsequent grade had addressed multiplication and division. 
Table 1 provides an overview of the design.

Lesson design
Each lesson was designed around introducing learners to the 
array as an image for multiplication and a focus on using simple 
ratio problems to elicit models. Lessons started with a 10-min 
introduction where posters of arrays of dots were shown to the 
learners who were asked how many dots there were. Discussion 
of different ways of finding the total that went beyond simply 
counting individual dots introduced the learners to the language 
of rows, columns and groups, which was subsequently linked 
to the symbolic notation for multiplication.

The main part of each of the four lessons was based on 
adapting the pedagogic approach developed by Askew (2005). 
Building on the work of Carpenter and colleagues (1999) and 
Fosnot and Dolk (2001), the pedagogy Askew advocates was 
closely linked to the principles and approaches outlined in the 
literature on working with ‘realistic’ word problems from 
which to develop the more formal, abstract mathematics.

The main part of the lesson started with the teacher offering 
learners a ‘realistic’ word problem to work on. This problem 
was intended to invite learners to share informal models and 
solution strategies. Typically, these informal models and 
strategies involved the use of concrete materials, or learner 
produced, inscriptions that may, in the initial stages, represent 
the problem situation iconically. The problems were, in other 
words, chosen to be ‘model-eliciting’ problems, in the words 
of Lesh and colleagues (2013).

After the teacher orally introduced the problem, learners were 
given time to work on producing a model for the problem, 
with particular examples of these learner productions selected 
to share with the class (selected in the expectation of advancing 
discussion of the mathematics). A second problem was worked 
on in a similar way, encouraging learners to think about the 

TABLE 1: Intervention timeline.
Time Week 0 Week 1 Week 2 Week 3 Week 4 Week 5

Learners
(morning)

Pre-test Lesson 1:
Taught by researcher 
with teacher assisting

Lesson 2:
Taught by researcher 
with teacher assisting

Lesson 3:
Introduced by teacher 
with researcher supporting

Lesson 4:
Taught by teacher 
with researcher supporting

Post-test

Teachers
(afternoon)

Pre-test marking and 
lesson 1 planning

Reviewing lesson 1 learner 
activity and lesson 2 planning

Reviewing lesson 2 learner 
activity and lesson 3 planning

Reviewing lesson 3 learner 
activity and lesson 4 planning

Reviewing lesson 4 learner 
activity and general discussion

Post-test 
marking
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models just shared, and after the models for the second 
problem had been looked at, talk with the class focused on the 
similarities across the two problems. Time permitting, learners 
practiced individually on further similar problems.

Test design
The pre- and repeated post- and delayed post-tests included all 
three types of MR simple proportion problems: multiplication, 
grouping and sharing. Each of the assessment items is briefly 
described below, with a keyword or phrase arising from the 
context attached as a reference for later discussion. An explicit 
array problem was last on the test in order not to cue learners into 
using arrays in the other test items.

Across all Grades 1–3 tests, the context and the basic format of 
each problem situation were kept constant but the numbers 
involved were changed to be in line with the curriculum grade-
level expectations (although on a small number of items, the 
numbers were kept the same across adjacent years, to provide 
some anchor items to make cross-grade comparisons). Given 
the small number of MR items, the clusters of three multiplication 
problems and five division problems were checked for internal 
consistency by calculating average inter-item correlations on the 
pre-test performance. An average inter-item correlation between 
0.15 and 0.50 suggests that items grouped together appear to be 
testing the same construct (less than 0.15 and the items are not 
well correlated and look not to be effectively measuring the 
same construct, if at all, and an average over 0.50 suggests that 
some items may be redundant). Across all three grades, the 
average inter-item correlations on each cluster fell within the 
ideal range of 0.15–0.5, suggesting that these items were 
assessing the similar constructs (Y1: 0.25/0.27 [multiplication 
cluster or division cluster], Y2: 0.26/0.21, Y3: MR 0.17/0.21). 
As noted above, two AR problems were also included, so that 
any expectation that the assessment was only about 
multiplication and division was not set up.

The MR problems on the test are listed in Figures 4 and 5, 
separated into the questions assessing direct simple ratio 
multiplication problems and those assessing the inverse 
division problems.

Given that the Grade 3 curriculum expects learners to deal with 
simple division problems with fraction answers (e.g. one apple 
shared between three people), we allowed for answers 
incorporating fractions in our marking, but only five G3 learners 
actually attempted to produce a fraction in the pre-test, two in 
the post-test and none in the delayed post-test (with one of these 
seven answers providing the correct number of whole sweets, 
but no answer providing the correct fractional part of 3/5).

The AR problems were:

Q1: Apples: Change increase – a number of apples were picked 
and then some more, how many altogether? (G1, 17 + 3; G2, 
17 + 3; G3, 17 + 33)

Q6: Marbles: Change decrease – a given number fell out 
of a pocket, how many were there originally? (G1, 12 – 3; 
G2, 25 – 18; G3, 25 – 18)

Test administration and marking
The pre-, post- and delayed post-tests were administered to 
each class by one of the research team. Given that the majority of 
children at the school are learning through the medium of a 
second language, each question was read out, at least twice, and 
a brief dialogue engaged in to check that the learners understood 
the context and what was happening within it, but without 
leading them to which operation to use. Learners were given 
time to answer the question and encouraged to use whatever 
representations they thought could help them figure out an 
answer. Copying was discouraged by providing each learner 
with a sheet of plain paper to cover up their work and seating 
learners as far apart as possible, and the two adults in the room 
(researcher and class teacher) reminding learners to do their 
own work. Although we cannot be sure that copying was 
eliminated, we are confident that it was kept to a minimum.

Each learner’s script was marked and results were entered 
into a spreadsheet as correct, incorrect (with the incorrect 
answer recorded) or omitted. As very few learners omitted 
questions (42 instances in 2330 responses across all three 
grades), in the following analysis, omitted answers are 
included with incorrect responses rather than analysed 
separately, on the assumption that if a learner omitted an 
answer, then they did not know what to do.

Scripts were kept for more detailed analysis and, together 
with learners’ inscriptions from activities engaged in during 

Q, question, G, grade.

FIGURE 4: Simple direct ratio multiplication problems.

Q2: Pots: Simple ra�o – given __ three-legged pots, find the
total number of legs?
G1: 5 three-legged pots G2: 5 three-legged pots G3: 9 three-legged pots
Q4: Feet: Simple ra�o –__ people sing at a table, how many feet
would there be?
G1: 6 people G2: 15 people G3: 24 people
Q10: Pies: Array –__ in each row and __ rows on a tray, how many pies
in total?
G1: 5 pies in a row,
3 rows of pies

G2: 12 pies in a row,
4 rows of pies

G3:12 pies in a row,
4 rows of pies

NR, no remainder; RD, round down; RU, round up; Q, question, G, grade.

FIGURE 5: Simple direct ratio division problems: Grouping and sharing.

Q3:Pots NR: Grouping,–__legs, how many three - legged pots could be made? 

G1: 12 legs G2: 21 legs G3: 21 legs

Q5: Cakes NR: Grouping, no remainder – __ cakes into boxes, 
each box holds __ cakes. 
G1: Four cakes or box, 12 
cakes

G2: Four cakes or box, 12 
cakes

G3:Eight cakes or box, 48 
cakes

Q7: Sweets RD: Sharing rounding down – __ friends equally share __ sweets,
how many do  they each get? 

G1: Three friends, 
16 sweets

G2: Three friends, 
32 sweets

G2: Five friends, 
43 sweets

Q8: Eggs RU: Grouping with remainder, round up – __ eggs into boxes, all 
eggs packed 
G1: Six eggs or box, 
15 eggs 

G2: Six eggs or box,
33 eggs

G1: Six eggs or box,
55 eggs

Q9: Pots RD: Grouping with remainder, round down – __ legs, how many
 three-legged pots can be made? 

G1: 16 legs G2: 35 legs G3: 50 legs
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the lessons, are being analysed qualitatively to probe further 
the quantitative findings that are here presented.

Ethical considerations
Ethical clearance was provide by the University of the 
Witwatersrand (number 2011ECE012C).

Findings
Item-level responses by grade
Figures 6–8 show the pre-, post- and delayed post-test results for 
each grade, combining the scores for individual classes. While 
there were totals of 126, 102 and 114 learners in each of G1, G2 
and G3, respectively, pupil absences near the end of term 

reduced post-test numbers, bringing the matched sample with 
performance data across all three test administrations down to 
G1, n = 79 learners; G2, n = 79 learners; and G3, n = 75 learners. 
Figures 6–8 are for these matched learners. The mean score for 
the full cohort of Grade 1 learners on the pre-test was 25% 
compared to a mean score of 27% for the subgroup of matched 
learners. In Grade 2, the pre-test mean score for the entire cohort 
was 43% compared to 44% for the matched group, with the 
Grade 3 figures being 40% and 43%, respectively. Thus, the 
mean scores on the pre-test are marginally higher across all 
three grades for the matched cohort than for the entire cohort. 
Although this shows that the matched cohort is skewed slightly 
to under-represent the lower achieving learners, the differences 
are not so great as to be troublesome.

Question 1 and 6 are the two AR questions. At all three 
assessment points and for all three grades, the results on Q1 
are similar (although, interesting, G1 did slightly better on 
this item on the pre-test than later tests), with similar scores 
also on Q6 all three times in G2 and G3 (and Grade 1 making 
a slight improvement, which might be expected given the 
attention to subtraction in this grade). On the other eight 
questions, all focused on MR, there are sustained gains on all 
but two instances across every grade. The similarity in the 
performance on the AR items compared to the differences 
attained on the MR items supports the hypothesis that the 
gains on the MR problems were a result of the intervention, 
rather than a consequence of test familiarity.

Five MR problems were single-step problems in that the 
context answer matched the numerical answer (Q2, 3, 4, 5, 
10), for example, finding how many three-legged pots could 
be made from 21 legs. Performance on all these single-step 
items shows gains from the pre-test to post-test, gains that 
were largely sustained and, in some instances, even exceeded, 
in the delayed post-test results. Performance on Q4 looks 
somewhat anomalous, with G3 performing worse on this 
question than either G1 or G2. While the calculation in G3 
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FIGURE 6: Grade 1 correct answers (percent), pre-, post- and delayed post-test 
(n = 79).
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FIGURE 7: Grade 2 correct answers (percent), pre-, post- and delayed post-test 
(n = 79).

Q, question.

FIGURE 8: Grade 3 correct answers (percent), pre-, post- and delayed post-test 
(n = 75).
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was harder, inspection of the scripts revealed many learners 
halving rather than doubling 24, an error not prompted in the 
G2 question through the problem using 15 people.

The remaining three MR problems (Q7, 8, 9) required the 
numerical answer to be made sense of in the problem context, 
for example, rounding down to find the number of pots that 
could be made with 50 legs. The graphs show, as might be 
expected, that performance was lower on these items than on 
the single-step ones and post-test gains were not as well 
sustained in the delayed post-test. The results show, however, 
that delayed post-test performance remained higher than on 
the pre-test on all but one item across all three grades (the one 
anomaly being the G2 ‘eggs’ item).

Pre-test and delayed post-test scores by grade
We turn now to examine results comparing grade and class 
mean scores on the pre- and delayed post-tests. The means 
(M) and standard deviations (SD) for the percentage of 
correct answers on the eight MR questions are presented in 
Table 2 (figures based on matched learners who took both 
the pre- and delayed post-tests: n is higher here than for 
the matched number of learners taking all three tests). 
The difference between the pre- and delayed post-test means 
(MD) shows that there were sustained gains for all grades 
and all classes.

Grade 1 showed the highest sustained gains, with a rise from 
18% on the pre-test, to 41% on the delayed post-test, a gain of 
23 percentage points. Class 1a demonstrated the largest 
overall gain of 30 percentage points, but given that the pre-
test mean score of the class was only 8%, there was more 
room for growth. This substantial gain, however, brought the 
class up from this low starting point to a delayed post-test 
score of 38%, not far behind the other two G1 class scores of 
43% and 40%.

The mean difference gains for Grade 2 and Grade 3 were 
similar at 10 percentage points in each case. This overall 
figure does not reflect the range of scores at the class level, 
particularly in Grade 2. Classes 2a and 2c showed an 

improvement of 10 and 18 percentage points, respectively. 
Class 2b, in contrast, showed only a difference of 1 percentage 
point, from a pre-test mean of 41% to a delayed post-test 
mean of 42%. Although Class 2b’s pre-test mean of 41% was 
higher than that of the other two classes (36% and 33%), it 
was not so much higher to make this low gain a result of a 
ceiling effect.

The Grade 3 class scores also show a range, albeit less 
dramatic, of performance at the class level, from similar pre-
test mean scores of 36%, 37% and 35%. Class 3a showed the 
greatest growth of 14 percentage points, followed by Class 3c 
with 10 points and Class 3b moving 6 percentage points from 
37% pre-test to 43% delayed post-test.

A two-tailed paired t-test was conducted comparing the pre- 
and delayed post-test results for grades and classes. At grade-
level, the results are all statistically significant at the 1% level, 
or less. At the class level, the results for all three G1 classes 
are statistically significant at less than 1%, with the results 
being more mixed for Grades 2 and 3. In four of these six 
classes, the results were statistically significant at the 1% 
level or less, and for a fifth class, the result was statistically 
significant at the 5% level. In the case of Class 2b, the results 
were not statistically significant.

Effect sizes (Cohen’s d) were calculated at the grade and class 
level. Grade 1 had the highest effect size of 1.62, with Class 1a 
having the high figure of 1.99. The effect sizes for Grades 2 
and 3 were similar at 0.56 and 0.6, respectively, but these 
figures again mask a range of effect sizes at the class level. 
Class 2c, for example, achieved an effect size of 0.9 compared 
to 0.08 for Class 2b. In Grade 3, Class 3a had the highest effect 
size of 0.67 and Class 3b had the lowest at 0.36. Any effect 
size over 0.4 is worthy of note, as an effect size smaller than 
this is likely to be the result of changes that would come 
about over time anyway. On this measure, the intervention 
appears to have had good impact in all three G1 classes and 
a moderate impact in two out of three classes in each of 
Grades 2 and 3.

Discussion
The results show that there were sustained, statistically 
significant gains in mean levels of performance from the pre- 
to delayed post-test across all three grades and all classes 
within grades, and these gains, together with the effect sizes, 
indicate that this model of a short, focused and structured 
intervention has the potential for contributing to the raising 
of standards in an area of the mathematics curriculum (MR) 
that has been identified as a presenting of difficulties not only 
in South Africa but also internationally. The delayed post-test 
scores were based on a test administration that followed the 
long summer break at the beginning of the next year of 
schooling (late January), that is, the Grade 1 delayed post-test 
was taken at the beginning of Grade 2, and similarly, the 
Grade 2 test was taken at the beginning of Grade 3. Given 
wide evidence that learning ‘falls back’ over long holiday 
breaks (Cooper et al. 1996), it was particularly pleasing that 

TABLE 2: Pre-test and delayed post-test means and standard deviations for 
multiplicative reasoning items at grade and class levels (matched learners) (percent).

Variable n
Pre-test Delayed post-test t-test

(p-value)
Effect 
sizeM SD M SD MD

Grade 1 94 18 10 41 17 23 < 0.01 1.62
Class 1a 28 8 7 38 21 30 < 0.01 1.99
Class 1b 34 23 12 43 16 20 < 0.01 1.38
Class 1c 32 21 13 40 18 19 < 0.01 1.17
Grade 2 93 36 17 46 19 10 0.01 0.56
Class 2a 30 36 18 46 24 10 0.10 0.48
Class 2b 31 41 14 42 17 1 0.74 0.08
Class 2c 32 33 22 51 17 18 < 0.01 0.90
Grade 3 97 36 15 46 18 10 0.01 0.60
Class 3a 32 36 20 50 22 14 < 0.01 0.67
Class 3b 33 37 11 43 19 6 0.27 0.36
Class 3c 32 35 17 45 15 10 < 0.05 0.64

M, mean; SD, standard deviation; MD, difference between pre-test and delayed post-test 
mean scores; n, number.
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gains were sustained over this period. In every grade and 
class, the delayed post-test scores at the beginning of the next 
year of schooling were higher than those shown in the same 
grades on the pre-test that was taken in the October of the 
previous school year. That is, for example, the Grade 2 mean 
score on entering Grade 3 was 46%, while the previous 
October score of the Grade 3 year was 36%. This gain across 
all the years suggests that more focused teaching of MR 
earlier in the school year could raise standards in ways that 
are sustained beyond the immediate teaching period. This is 
important in a South African context where the phenomena 
of ‘extreme localisation’ have been noted (Venkat & Naidoo 
2012), in which even very recent learning is not being taken 
as established, and used to carry learning forward.

While the gains are important, it is also worth noting that 
only two out of the nine classes had an average score of 
correct answers of 50% or more on the delayed post-test – 
Class 2c and Class 3a – with the comparable scores in the 
other classes being in the range of 38% – 46%. Thus, there is 
still some way to go before the majority of learners 
demonstrate proficiency in MR at even the level of 50% 
correct. Our initial qualitative analyses suggest that the gains 
were mainly as a result of learners’ better interpretation of 
the mathematical structure of the problems, many shifting 
from using addition to recognise the multiplicative structure. 
There is less evidence, however, of learners then using more 
sophisticated calculation strategies to find answers – G3 
learners relied on iconic representations and counting just as 
much as G1 and G2 learners. Hence, it is likely that the lower 
gains observed in Grades 2 and 3 are a result of errors in 
working with larger numbers. This continued reliance on 
unit counting reflects the broader South African terrain of 
evidence that we noted earlier in the article and suggests that 
further research is needed into how to help learners develop 
more efficient calculating strategies once they have correctly 
identified the mathematical structure of a problem.

Hattie (2008) argues that ‘effect sizes’ are the best way of 
answering the question ‘what has the greatest influence on 
student learning?’ and that an effect size of 1.0 is typically 
associated with advancing learners’ achievement by 1 year. 
Given an effect size of 1.62 in Grade 1, we might be tempted 
to suggest that the intervention was nothing short of 
miraculous, but that would be overstating the case given the 
relatively limited purview of the test involving only eight 
MR items. While pragmatic from the perspective of working 
with early primary years’ learners, we note that the initial 
pre-test mean result in Grade 1 stood at 18%, with the delayed 
post-test mean score of 41%, indicating that there was still 
considerable room for improvement.

Hattie’s own research has shown that ‘instructional quality’ 
and ‘direct instruction’ can have effect sizes of 1.00 and 0.82, 
respectively. Given the careful attention to the designing and 
delivery of the lesson with a well-focused set of small learning 
intentions together with instruction carefully designed to 
address MR in ways that distinguish it from AR, the effect 
sizes we obtained are sufficiently encouraging to explore 

some scaling up of the intervention. Our next step is therefore 
to broaden the scope of the intervention to a larger number of 
schools and teachers, building in some control schools, and 
to explore the nature and magnitude of effects when the 
research teams are less directly involved in the teaching of 
the intervention lessons.
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